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INTRODUCTION

An important problem in endocrinology is the
determination of the number of peaks or episodes of
secretion of a pituitary hormone from a series of
measurements of its circulating levels, It is known for some
hormones, such as luteinizing hormone (LH), that episodic,
pulsatile release can have nearly the opposite effect as a
steady, tonic release of the same amount of hormone.
Several groups (1-5) have attempted to characterize such data
sets by first ascertaining the number of underlying "peaks"
or "events" giving rise to the data. Tk problem is
complicated by the mixing and dilution of the secreted
hormone in the peripheral blood, the dynamic ¢learance of
the hormone by the kidneys and other organs, and by the
often large degree of measurement error inherent in hormone
assay measurements.

The earliest workers in the field of endocrinological peak
detection used visual, graphical methods 1o evatuate the
presence of a secrewory peak. Santen and Bardin proposed
to define a peak as a sudden rise from "baseline” of more
than 20% (6). Other workers have elaborated these
methods, including a robust definition of the baseline (2),
Fourier spectrum analysis (5), robust definition of a peak
(3), and more recently, numerical deconvolution (3.4).
Recently, O'Sullivan and O'Sullivan demonstrated the use of
the ge ized cross-validation index (GCV) in conjunction
with numerical deconvolntion for data sets of this sort (7).
Diggle and Zeger {(8) use maximum likelihood estimation for
a modified autoregressive process to characterize such data
arising in physiological studies of sheep.

Serious problems remain in this area. First, there is no
generally accepted, rigorous, formal definition of what
constitutes a secretory event or peak. Thus, it is difficule to
move toward an optimal peak detector. Perhaps the best
definition that can now be given is that a secretory eventis a
rare, instantaneous occurrence of variable magnitude, during
which a finite amount of hormone is placed in the
circulation. For technical reasons, some workers
characterize such events as having finite duration, with a
gaussian or other shape with respect to time.

A second problem is that the clearance kinetics, i.e. the
rate at which a secreted hormone decays in the circalation, is
undefined. Here, most workers assume first-order, linear
kinetics, i.e. decay according to a single negative
exponential-time curve, while admitiing the possibility of
two or more exponential components. The time constants
assaciated with each component are generally unknown at
the outset. )

A third problem is the dependence or correlation of the
number of observed secretory events with the assumed fime
constant for exponential decay. That is, many data sets may
be equally well represented by many peaks with a short
decay time as by few peaks with 2 long decay time. This
dependency is an inherent limitation of the data, regardless
of the method of analysis, yet the problem seems to have
been largely ignored by workers in this area. We will
explore this problem further.

Fourth, the concept of "number of peaks” is
problematical. For example, due to the limited time-
resotution in the data series there may actually be a large
rumber of very small peaks, closely spaced in time, which
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are "invisible" to the analysis. Even some of the smaller,
biclogically irrelevant but visible peaks may affect the peak
count. Finally, even when the number of events or peaks
can be well-defined and well-estimated, one must take
account of the magnitude of the events. A train of uniformly
sized, uniformly spaced peaks might have a very different
biclogical meaning than a series consisting of highly
variable, unevenly spaced peaks. We discuss this problem
and propose an alternative solution to simply estimating the
number of peaks.

More work is needed to ascertain the statistical properties
of the varions peak counting/peak detection methads
proposed in the literature. Some workers have characterized
the "false positive/false negative” rates for their methods by
numerical simulation. Statistically sophisticated methods are
often computationally intensive, so that numerical
characterization of their properties is infeasible. In order to
permit numerical simnlation, we chose to consider only
computationally feasible methods, sacrificing some degree of
optimality. We attempted to incorporate as much realism
into the underlying model as possible. We take a “data-
analytic" approach, with virtually all parts of our model
being suggested by features in illusmative data sets.

AN EXAMPLE

The data set shown in Figure 1A represents the sampled
concentration of circulating luteinizing hormoune (LH}), taken
every 5 minutes over a 12 hour interval in a normal male
volunteer (9). LH is a primary pitritary hormone controlling
gonadal function, We note the appearance of 4 obvious
major asymmetric peaks, with apparently exponential tails.
These peaks are the primary indication of pulsatility in these
data. Included in this data set are several apparent outliers,
one possibly resulting from a transposition of two data
values.
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Figure 1. A: LH concentration measured every J minutes
for a 12 hour period, 144 observations taken from (9). B:
Base 10 logarithm of LH concentration.
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THE MODEL

The LH data can be characterized as a continuous
function with a small nurmber of jumps or step
discontinuitics, representing the pulses. The apparent
exponential tails of each pulse can be linearized by plotting
1LH on a logarithmic scale, as in Fig, 1B. Ideally, as each
pulse is cleared from the circulation by the same mechanism,
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the exponential rat of decay and hence the negative slope
should be constant. With this assumption, the data now are
representable as a downward sloping straight line broken
occasionally by upward jumps, for which we write:

my
¥Yi=p1+ ,;l pj -kG1) +e i=l,...n (1)

where y; is the logarithm of LH concentration at time %, pg is
a baseline or initial value of y at time zero, p; is the pulse
height of the jth pulse in this coordinate system, and g;is a
normally distributed error term. The sum is taken over the
first m; pulses which occur before the ith time point,
Incidentally, the logarithmic transformation, in addition to
linearizing the decay component, has the additional
advantage of compensating for the commonly observed
heteroscedastic measurement errar for LH, which hag nearly
constant coefficient of variation.

We now seck to estimate the number of the upward
jumps or "peaks" in the series. Simultaneously, we shall
estimate the location and magnitude of each peak, and
optionaily, the decay rate, k. The relationship between the
number of upward jumps and the value of the downwand
slope, k, is clear. If the slope is too great, too many
upward jurnps will be required to fit the data. Too gradnal a
slope will result in too few jurnps or "peaks.”

One may also think of this model as a "zero-order” spline
plus a linear term. A zero-order spline is a series of constant
functions separated by points of discontinuity called "knots.”
Since we are particularly interested in these jump
discontinuities, the problem is then to find the appropriate
number and location of knots required to represent the data,
PEAK DETECTION ALGORITHM

There are actually three phases to the algorithm we
propose to use, corresponding to the estimation of the
number, location and magnitude of the peaks. We have
deliberately made the model linear in all its parameters, so
that the magnitude of the peaks and the decay rate can be
estimated in the firgt phase by linear regression. In the
second phase, the location of the peaks will be determined
wsing a variation of stepwise linear regression. In the third
phase, determining the number of peaks, we face a problem
analogous t0 deciding when to stop adding terms to a
multipie regression model. We shall investigate the use of
the generalized cross-validation index (GCV) for this
purpose. The use of GCV is partialty motivated by the
similarity of our model to a spline model, in the context of
which the GCV was originally applied(10).

Peak Magnitude

To formulate the problem as a multiple linear regression,
consider the set of independent variables xj, which are to be
the basis functions for the spline. that is, we allow for
potential pulses at each of the time points. Let x;j, that is x;j
at the ith data point, be O if i<j and 1 elsewhere. Fora
particular subset of size m of the n possible peaks, indexed
by s, the model may be written

m
yi=p1+s§1 Pj(s) Xijis) - k(i-D + € i=L...n  (2)

We may assume either that the decay rate, k, is known
from other data, or that it is to be estimated from the data at
hand.

With a known decay rate, we may re-write (2) as

m

yi=yi+k@D =pi+ T pioxio *& O
S=

The design matrix when this particular set of peaks is
included becomes:
Xin = [ x1 () Xj2) ... Xjem) )
where xj = (0.0, ..., 0, 1, 1, ..., DT, with che first 1 in the
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j+1strow of xj, and the parameter vector = (po, Pi(l}s s
Pim)}T. Whea k is to be included as an upknown parameter,
we append the vector (0,1,2,....n-1)7T as the first columnn of

in.
Peak Location

To determine peak locations, we must determine the
particular set of independent variables, xj, to include in the
regression. The variable selection technique for this problem
should attempt to explain the greatest residual surn of
squares with the least number of parameters, but should also
enforce the constraint that the secretory peaks be positive,
since a "negative” secretory burst is biclogically infeasible.
For this reason, we shall investigate only a stepwise addition
strategy, guarantecing satisfaction of the positivity coastraint
ateach step. A more complex strategy including both
stepwise deletion and addition would be rexquired to find the
best possible subset regression, or the best "positive” subset
regression. Such strategies are quite computationally
intensive, and not amenable 10 numerical simulation. n our
example, such complex strategies did little to reduce the
residual sum of squares, i.e. the simpler strategy
recommenled here is apparently nearly optimal, in the
examples we have tested.

The peaks are "detected” sequendally. To choose the
next peak or regressor, we include that variable whose
component of the anti-gradient vector is most positive, That
is, we use a pradient-directed search for the next peak to
include in the regression. This peak is readily determined as
the largest component of the gradient, X'oy {¥ - 3\(}, where
Koy is the matrix of variables not included in the regression,

and ? is the vector of predictions of the current model.
Requiring the antigradient component to be positive farces
the new peak to be positive, but may still permit other peaks
already included to become negative. We check for this
latter condition and terminate the search if it becomes e,
Alternatety, we could have added the peak which explains
the largest part of the residual sum-of-squares. This
approach can be effectively implemented using the S
operator on the sum-of-squares-and-cross-products (SSCP)
matrix (10), but it is computationally slighdy more expensive
than the gradient direcied approach, which performed almost
as well in terms of the final residual sum of squares.
Number of Peaks

To determine the number of peaks giving rise to the
observed data, it is necessary to truncate the stepwise
regression procesliure at some point. At each step of the
regression, the residual sumn of squares (SS) will decrease.
Likewise, the mean square error calculated as SS/df, will
also decrease, approaching an unbiased estimate of the

variance of the error term £, Here, we take the degrees of
freedom, df = n-m-2. Howevex, the GCV, defined as
$5/df2, should theoretically decrease to a minimum when the
regression model has the best predictive power for the data
series, i.e. at the true number of 8 (10). This procedure
was also suggested by O'Sullivan (7). Thus, the procedure
we t is to add terms to the regression until the minimum
GCV model is found.
RESULTS

‘We now illustrate this procedure on the LH data of
Figure 1. Figure 2A illustrates the results after a single peak
has been found. We include a "peak” (p1) at the first time
point in this and all subsequent models, representing the
"baseline" or "initial” value for LH concentration. The
gradient vector, plotted as a series, is also shown in Figure
2A, The three largest local maxima indicate potential
positions for peaks in subsequent steps. There is obvious
inadeqpacy of the fit of the one-pulse modet. Figures 2B-
2H show the results after 2 through 5, 10, 15, and 20 peaks



0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Sample Number Sample Number

Figure 2A-H. Results of models involving 1,2,3,4,5,10,15,0r 20 peaks, respectively. In each panel, Upper trace:
Reconstructed data superimposed on actual data (*); Middle trace: Peaks found by cumrent model, Lower trace;
Components of gradient vector for each model. Maximum of gradient vector components is chosen as the position of the
next peak to add to the model.
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Figure 3. GCV index (=88/df2) for models chosen by the
new algorithm. Solid lines, Lower trace; df=n-m-2; Middle
trace: df=n-2m-2; Upper wace: df=n-3m-2; Dashed lines:
decay factor k is fixed at 0,03, (@, Q) indicatc positions of
minimum of GCV index.

have been detected, respectively. Choice of appropriate
model can be made visually or through the use of the GCV
index, plotted in Figure 3. Althongh, there were 4 or 5
visually obvious major peaks in the original series, the GCV
minimal model includes 23 peaks. While the 5 peak model
did show some evidence of lack of fit and the additional 18
peaks did reduce the SS two-fold, one suspects the
physiological reality of those 18 additional peaks. Some of
them do not seem very likely to be meaningful upon visual
inspection of the data.
Number of Peaks vs, Decay Rate

Figure 4 is a plot of estimated decay rate k vs number of
peaks for the LH example, showing a consistent, nearly
linear relationship. From Fipure 3, we see that there is a
very broad range in the acceptable number of peaks, in that
the GCV changes negligibly from about m=20 to 40. The
corresponding range in value for k is 0.03 o 0.05. Thus,
neither estirates of nember of peaks nor of the clearance rate
are likely to be very precise using this kind of data. One
alternative approach would be to estimate the clearance rate
from another experiment {c.g., using a bolus injection of
hormone), and include the result as a fixed parameter. Asan
example, we set the value of k=0.03, and recomputed the
regression, Now, the GCV minimur oceurs at 26 peaks,
with a narrower acceptable range from about 22 to 29
(Figwe 3, lower trace, dashed lines, open symbol). Thus,
external measurements of the decay rate would appear 1o be
userful for estimating the number of peaks.
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Figure 4. Plot of estimated decay rate, k, vs. m, the number

of peaks in the model showing nearly linear relationship.
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Numerical Simulation
Fhe results from the previous section are disappointing in
two tespects. First, there is no ¢lear cut answer to the
question "How many peaks?" Second, the best available
answer (between 20 and 40) seems much too high when one
evaluates Fig. 1 visually. It seems that a reasonable
procedure should conclude that there are about 4 large peaks.
Many physiologists would suggest, perhaps intuitively, that
these four or five sudden major changes in the circulatng
concentration are the key signal. The remainder of the
variability in the signal is probably of less importance. Yet
in a model close to the GCV optimum, those four major
peaks are barely discernable amongst the other reconstructed
peaks (Fig. 2H). To see if this situation was simply the
results of mndom measurement eror, we performed a
simulation study, using a model with five peaks as the
underlying signal. The variance of the error term was set to
0.03 and k was taken at 0.03. Averaged results of 846 runs
of the peak-detection algorithmn are shown in Figure 3.
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Figure 5. Expected value of GCV index calculated from 846
sets of simulated data using a 5 peak model. Lower, middle
and upper traces, symbols as in Figure 4. Solid lines: k is
estimated parameter; Dashed lines: k = true value, 0.03.

From these result, we see that the GCV optimal number
of peaks is indeed biased {observed value: 230, true value:
5). Even when the decay rate, k, is fixed at its true value,
the GCV reaches a minimum with 10 peaks (Fig. 5, dashed
lower trace, open symbol). When the decay rate is estimated
from the data, the GCV continues to decrease even after 29
peaks are estimated (Fig. 5, solid lower trace, closed
symbol)! This suggests that the GCV minimum estimate of
the number of peaks is seriously biased.

Omne explanation for this bias stems from the computation
of degrees of freedom used in the GCV, df=n-m-2, where m
is the number of peaks detected. For each peak, two degrees
of freedom are lost; one for the peak amplitude p;, and one
for the peak location within the series. Thus, the GCV
ought to be penalized at a higher rate, by setting df=n-2m-2.
With this approach, a more satisfactory answer for number
of peaks is obtained in the simulations {Fig 5, middle trace).
Now, the GCV-minimum number of peaks is 6, closer to the
true valve, 5, with & much more narrowly defined range of
acceptable values. With the decay rate k fixed at the true
value, the GCV minimum occurred at 7 peaks.

En another context, bot using linear splines, Friedman
{12) has suggested that the appropriate formula for df is n-
3m-2, where the factor, 3, is a rough estimate of the actual
number of df lost due to chosing the independent variable
which reduces 58 the most, rather than a random one. We
may test this idea with simulations by evaluating the
expected value, E(8Sm) as a function of the number of
peaks, m. Normalizing by the total number of
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Figure §. Expected value of residual sum of squares versus
number of peaks in model, calculated from same simulations
as in Figure 5. In the region of the true model, ideally,
E(SS8)/n=0%(1-fm/n), so that the X intercept of the tangent
line my, can be used to solve for f, For m,=0.34, the penalty
factor f is roughly 3.0, suggesting that the correct formula
for GCV should be §8/(n-3m-2)2,

measuremens, n, we may determine the correct value for the
penalty factor, f from the tangent to the curve in Figure 6. In
our example we see that f=3.0 is quite appropriate, We
believe this result (f=3.0) should be reasonably general for
many data sets of this type with about 100-200 observations
and less than about 20 peaks, although the correct value for
the factor f could be determined in each situation by a
simulation of the type shown in Fig. 6.

DISCUSSION

We have presented a new, simplified strategy for
estimating the number of secretory peaks or events from a
series of hormone concentration measurements. The method
accounts for first-order linear clearance of the hormone from
the blood. Without making assumptions about either the
infrinsic measurement error or the rate of decay, the method
estimates the number of discrete events giving rise to the
data. As such, this method is about as general as Veldhuis'
"multiparameter deconvolution" approach (13) or the
numetical deconvolution approach used by O'Sullivan (7).
One detail left out of our model is the "rise-time" for each
pulse, used by both (13) and (7). Some evidence of the
need for this detail can be found even within the present
example, wherein the rise of the peak seems to be spread
over two or three intervals. An obvious way to include the
"rise-fime” is to change the spline basis elements, to rise
gradually from 0 to 1 over the space of 1, 2 or 3 time
intervals. Then, repetition of the above anglysis would
allow the selection of the GCV minimal rise ime along with
estimates of the other parameters. We do not sec any
conclusive evidence of the need for a second decay
component, although extensive phanmacokinetic experiments
have suggested its presence in LH clearance (14). Itis
possible that the absence of a second component has been
compensated in our analysis, by the presence of LH
secretion in the intervals between the 5 major peaks.

In contrast to the approaches taken by (7) and (13), our
method is computationally fast, requiring only about 1
minute of computation time for analysis of the example using
MATLAB on a Macintosh I. Both (7) and (13) require
substantial computing time, between 12 and 20 hours on a
SUN workstation, or a fairly extensive computation on an
IBM mainframe. The main advantage of the short
computation time is in making sienulation feasible, even asa
standard pan of the analysis of any single data set.
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A simifar problem has been treated in the seismological
engineering literature by Mendel, Kormylo and others (15,
16). There, investigators are interested in reconstructing the
sudden changes with distance of the impedance of geologic
formations. The observed data may be represented as a
convolution of an impulse sequence with the characteristic
response of each pulse. The use of maximum likelihood
techniques with a Bernoulli-Gaussian model gives rise to a
reasonable estimation procedure. However, the seismologist
is primarily interested m reconstructing the underlying strata
of rock, that is, the location of particular pulses in the
reconstructed series. The endocrinologist is prirarily
interested, not in the individual peaks per se, but in peak
frequency, or some overall measure of pulsatility. Thus,
such engincering methods are not endrely applicable. In
particular, our primary focus is on peak frequency or
number of peaks, in the face of an unknown clearance rate,
rather than the exact temporal location of any particular peak.

A major conclusion of this exercise is that the number of
estimated peaks is highly correlated with the estimated decay
rate. Second, the GCV optimal number of peaks can be
heavily biased, especially when the decay rate is unknown,
Third, even with the comrected GCV, there can still be
substantial uncertainty in the estimated number of detected
peaks. We are therefore surprised by claims of (13), that all
the unknown parameters of the model: rise-time, decay rate,
as well as number, location, and height of secretory peaks
can be well-determined by a "multi-parameter
deconvolution” method on similar data. We suspect this is
only possible if the number of peaks is constrained a priori
to some particular value, or range of values.

We sugpest the following ideas for fumre work
1) Use of replicate assay measurements ¢an, {o some extent,
prevent over-estimation of the number of peaks. One could
march the residual mean square from the peak detection
technique to the assay measurement error, and assure that the
former does not become too small. Assay error is but one
component of the error term in our madel; biological and
system variability should also b included.

2) Much work has been presented in the physiological
literature, characterizing the behavior of peak detection
algorithms (4). There, workers are often concerned with
“false-negative” and "false-positive” mtes. Frequently, ad
hoc peak-detection algorithms need to be “calibrated” on
white-noise to validate the nominal significance of detected
peaks. One significant remaining problem in such
approaches is that the false-positive rate for these methods
may differ when signal is present from the rate on signal-free
white noise. We feel that a more fruitful approach is to
examine the bias in estimates of number of peaks, and then
find minimum-bias, minimum-variance estmates. The
identity of any particular peak is seldom critical.

3) Most applications of hormone pulse counting technigues
might not actually require the “truth” regarding the
underlying number of secretory events. Rather, as with
much clinical research, comparisons between two patient
groups (treated and untreated, healthy and disease) are often
more relevant, Although we may not deterrnine number of
pulses precisely in the face of uncertain clearance rate, we
can surely evolve a comparative index. For example, the
entire curve relating clearance rate to number of peaks for a
normal group (Figure 4, averaged over subjects) muy be
compared to a similar curve for a treated group. Relevant
comparisons may be made at predetermined point, along a
predetermined range of that curve, at the GCV optimal
location, or using the entire length of the curve. We suspect
that establishing an appropriate, statistically stable index of
pulsatility, suitable for comparison of individuals and groups
of patients, wall be of greater importance than more elaborate
deconvolution techniques.
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APPENDIX

The following is code for MATLASB (17) on a Macintosh II,
;l;ich will implement the stepwiss algorithm discussed in
Xt

Ix=length(y)
datl=log(v)
%peaks stores a flag for inclusion in the model
peaks=zeros(lx,1);
peaks(l)=1;
newpeak=1;
%desx stores design vectors for all possible peaks
desx=tril{ones(Ix,1x));
table=(k
for mn=1:35
nm
FSequential knots :
%are added to a linear spline,
%Knots are added according to
%bthe max, component of S5 gradient
%bx contains the columns for the knots already
%in the model
E’o 11(= 1 or O whether or not slope is parameter
% build the design matrix x, including all variables for
x~=desx(:,peaks);
npeaks=sum{peaks);
if lema]
x=[x (L:Ix)7];
end
%perform regression with new design matrix
beta=(x"*x)\x"*dat1);
ypred=x*beta;
resids=dat1-ypred,
beta2=zeros(Ix,1);
beta2(peaks)=beta(l:npeaks);
ss=resids*resids;
plot {[dat1+10 ypred+10 beta2+10 resids+8 1)
%if slope is included in regression, get it
if k==1
slope=beta(npeaks+1);
end;
table{run,] }=npeaks;
table{run,2)=slope;
table(run,3)=ss;
table(run,4)=0;
table{run,5)=newpeak;
table(run,6)=ss/(Ix-npeaks-k);
table(run, 7)=1000*ss/(Ix-npeaks-k)/{Ix-npeaks-k};
%now set up new trial knots
edss will be vector of delta ss for each unused variable
dss=zeros(dat1);
betanew=zcros(datl);
trialx=desx(:,1-peaks);
txresids=trialx"*resids;
dss=zeros(lx,1)
dss(1-peaks)=txresids;
%MNow find largest reduction in ss
(zz,i]=sort(-dss);
peaks(i(1))=1;
newpeak=i(1);
%Now go back to include newpeak in regression
end;



